Acta Cryst. (1999). C55, IUC9800078 [doi:10.1107/S0108270199099916]

A nimesulide intermediate

K. Chandramohan and K. Ravikumar

Abstract

The X-ray structure of the title compound, $C_{13}H_{13}NO_3S$, has been determined. The two phenyl rings make a dihedral angle of 73.5 (1)°, indicating the non-planarity of the molecule. The orientation of the methanesulfonanilide moiety to the phenyl ring is given by torsion angle C13—S—N—C12 – 69.2 (2)°. The molecules are linked into pairs by N—H…O hydrogen bonding over an inversion centre.

Comment

The structure of the title compound was examined as part of an extensive study of Non-steroidal anti-inflammatory drugs (Ravikumar, 1993, 1994). We report here the crystal structure of 2-phenoxymethanesulfonanilide, (I), the precursor used in the synthesis of Nimesulide, (II), an anti-inflammatory drug (Moore & Harrington, 1974; Swingle & Moore, 1984; Ward & Brodgen, 1988). A view of the molecule with atom numbering in shown in Fig. 1. The S=O distances [1.424 (2)–1.438 (2) Å] are within the range observed for other sulfanalide drugs (Chaterjee *et al.*, 1981). The structure of Nimesulide has been reported (Dupont *et al.*, 1995). Bond distances and angles are similar to those observed in Nimesulide except C8—C9—C10 angle, 120.5 (2)°. The widening of the corresponding angle 123.1 (3)° observed in Nimesulide may be attributed to the effect of the nitro group substituted at C9. The dihedral angle between the two phenyl rings is 73.5 (1)° [74.7 (1)° in Nimesulide (II)] indicating that the molecule is twisted. In the crytal, the molecules exists as N—H…O hydrogen bond dimers around inversion centres. The amino N atom and atom O2 of the sulfoxide participates in the hydrogen bond formation [N…O2(-x, -y + 1, -z) 2.949 Å, H0A…O2 2.153Å and N—H0A…O2 147.1°].

Experimental

The title compound was provided by NATCO Laboratory, Hyderabad, India, and recrystallized from benzene by slow evaporation.

Refinement

H atoms were located from difference Fourier map; they were positioned geometrically and included as riding atoms with fixed isotropic displacement parameter in the structure-factor calculations.

Computing details

Data collection: P3 Diffractometer Program (Siemens, 1991); cell refinement: *SHELXTL-Plus* (Sheldrick, 1991); data reduction: *SHELXTL-Plus*; program(s) used to solve structure: *SHELXTL-Plus*; program(s) used to refine structure: *SHELXL93* (Sheldrick, 1993); molecular graphics: *SHELXTL-Plus*; software used to prepare material for publication: *SHELXL93*.

2-phenoxymethanesulfonanilide

Crystal data	
C ₁₃ H ₁₃ NO ₃ S	$\gamma = 102.78 (1)^{\circ}$
$M_r = 263.30$	$V = 627.0 (1) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 8.146(1) Å	Μο Κα
<i>b</i> = 8.927 (1) Å	$\mu = 0.26 \text{ mm}^{-1}$
c = 9.290 (1) Å	T = 293 (2) K
$\alpha = 101.14 \ (1)^{\circ}$	$0.16 \times 0.16 \times 0.16 \text{ mm}$
$\beta = 100.95 (1)^{\circ}$	

Data collection

Siemens R3m/V diffractometer	$R_{\rm int} = 0.018$
Absorption correction: none	2 standard reflections
2669 measured reflections	every 98 reflections
2481 independent reflections	intensity decay: ≤1%
2077 reflections with $I > 2\sigma(I)$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	164 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
2481 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

References

Chaterjee, C., Dattagupta, J. K. & Saha, N. N. (1981). Acta Cryst. B37, 1835-1838.

+pa1137+Dupont, L., Pirotte, B., Masereel, B., Delarge, J. & Geczy, J. (1995). Acta Cryst. C51, 507-509.

Moore, G. G. I. & Harrington, J. K. (1974). Belgian patent 801 812; US Patent 3 840 597.

+ha1029+Ravikumar, K. (1993). Acta Cryst. C49, 1180-1182.

+mu1049+Ravikumar, K. (1994). Acta Cryst. C50, 589-592.

Sheldrick, G. M. (1991). SHELXTL-Plus. Revision 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1993). *SHELXL93*. Program for the Refinement of Crystal Structures. University of Gonttingen, Germany. Siemens (1991). *P3 Diffractometer Program*. Version 4.21/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin. USA.

Swingle, K. F. & Moore, G. G. I. (1984). Drugs Exp. Clin. Res. 10, 587-589.

Ward, A. & Brodgen, R. N. (1988). Drugs, 36, 732-753.

Scheme 1

supplementary materials

2-phenoxymethanesulfonanilide

Z = 2
$F_{000} = 276$
$D_{\rm x} = 1.395 {\rm ~Mg~m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 25 reflections
$\theta = 6 - 15^{\circ}$
$\mu = 0.26 \text{ mm}^{-1}$
T = 293 (2) K
Transparent cube, colorless
$0.16 \times 0.16 \times 0.16 \text{ mm}$

Data collection

$R_{\rm int} = 0.018$
$\theta_{\text{max}} = 26.1^{\circ}$
$\theta_{\min} = 2.3^{\circ}$
$h = 0 \rightarrow 10$
$k = -11 \rightarrow 10$
$l = -11 \rightarrow 11$
2 standard reflections
every 98 reflections
intensity decay: $\leq 1\%$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.116$	Calculated $w = 1/[\sigma^2(F_0^2) + (0.062P)^2 + 0.2251P]$ where $P = (F_0^2 + 2F_c^2)/3$?
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$
2481 reflections	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
164 parameters	Extinction correction: SHELXL93, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.160 (10)

methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$

supplementary materials

S	0.05903 (7)	0.58633 (6)	0.26066 (6)	0.0377 (2)
Ν	0.1093 (2)	0.4278 (2)	0.1847 (2)	0.0371 (4)
H0A	0.1102	0.4075	0.0862	0.080*
01	-0.1320 (2)	0.1599 (2)	0.1693 (2)	0.0486 (4)
O2	0.0399 (2)	0.6717 (2)	0.1448 (2)	0.0503 (4)
O3	0.1836 (2)	0.6620(2)	0.4003 (2)	0.0531 (4)
C1	-0.3990 (3)	0.0271 (3)	0.2121 (3)	0.0479 (5)
H1A	-0.4031	0.1257	0.2728	0.080*
C2	-0.5316 (3)	-0.1088 (3)	0.1868 (3)	0.0560 (6)
H2B	-0.6275	-0.1039	0.2321	0.080*
C3	-0.5256 (3)	-0.2503 (3)	0.1005 (3)	0.0534 (6)
H3B	-0.6190	-0.3438	0.0832	0.080*
C4	-0.3878 (3)	-0.2559 (3)	0.0376 (3)	0.0580 (6)
H4A	-0.3828	-0.3539	-0.0234	0.080*
C5	-0.2539 (3)	-0.1200 (3)	0.0609 (3)	0.0542 (6)
H5A	-0.1568	-0.1224	0.0168	0.080*
C6	-0.2620 (3)	0.0187 (2)	0.1485 (2)	0.0386 (5)
C7	0.0271 (3)	0.1787 (2)	0.2627 (2)	0.0358 (4)
C8	0.0686 (3)	0.0706 (3)	0.3433 (3)	0.0455 (5)
H8A	-0.0158	-0.0268	0.3344	0.080*
C9	0.2340 (3)	0.1031 (3)	0.4339 (3)	0.0490 (6)
H9A	0.2625	0.0294	0.4908	0.080*
C10	0.3574 (3)	0.2410 (3)	0.4439 (3)	0.0505 (6)
H10A	0.4715	0.2634	0.5082	0.080*
C11	0.3165 (3)	0.3482 (3)	0.3621 (2)	0.0439 (5)
H11A	0.4036	0.4429	0.3681	0.080*
C12	0.1513 (3)	0.3192 (2)	0.2725 (2)	0.0345 (4)
C13	-0.1435 (3)	0.5254 (3)	0.3009 (3)	0.0560 (6)
H13A	-0.1768	0.6163	0.3467	0.080*
H13B	-0.2285	0.4683	0.2089	0.080*
H13C	-0.1359	0.4577	0.3693	0.080*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S	0.0433 (3)	0.0326 (3)	0.0355 (3)	0.0083 (2)	0.0071 (2)	0.0088 (2)
Ν	0.0437 (10)	0.0346 (9)	0.0334 (8)	0.0083 (7)	0.0110 (7)	0.0103 (7)
O1	0.0388 (8)	0.0389 (8)	0.0626 (10)	0.0023 (6)	-0.0017 (7)	0.0228 (7)
O2	0.0670 (10)	0.0396 (8)	0.0474 (9)	0.0152 (7)	0.0118 (8)	0.0187 (7)
O3	0.0588 (10)	0.0418 (8)	0.0453 (9)	0.0078 (7)	-0.0021 (8)	0.0009 (7)
C1	0.0479 (13)	0.0438 (12)	0.0505 (13)	0.0135 (10)	0.0123 (10)	0.0063 (10)
C2	0.0447 (13)	0.0577 (14)	0.066 (2)	0.0088 (11)	0.0212 (12)	0.0147 (12)
C3	0.0472 (13)	0.0451 (12)	0.0599 (14)	-0.0005 (10)	0.0084 (11)	0.0138 (11)
C4	0.065 (2)	0.0378 (12)	0.067 (2)	0.0090 (11)	0.0196 (13)	0.0039 (11)
C5	0.0512 (13)	0.0463 (12)	0.069 (2)	0.0123 (10)	0.0268 (12)	0.0112 (11)
C6	0.0361 (10)	0.0346 (10)	0.0431 (11)	0.0056 (8)	0.0035 (9)	0.0151 (8)
C7	0.0366 (10)	0.0368 (10)	0.0347 (10)	0.0097 (8)	0.0084 (8)	0.0105 (8)
C8	0.0490 (12)	0.0411 (11)	0.0490 (12)	0.0118 (10)	0.0111 (10)	0.0184 (10)

supplementary materials

С9	0.0556 (14)	0.0497 (13)	0.0460 (12)	0.0239(11)	0.0059 (10)	0.0169 (10)	
C10	0.0443 (12)	0.0568 (14)	0.0469 (12)	0.0202 (10)	0.0006 (10)	0.0077 (11)	
C11	0.0386 (11)	0.0432 (11)	0.0447 (12)	0.0086 (9)	0.0074 (9)	0.0038 (9)	
C12	0.0390 (10)	0.0341 (10)	0.0313 (9)	0.0113 (8)	0.0100 (8)	0.0069 (8)	
C13	0.0521 (14)	0.065 (2)	0.0568 (14)	0.0189 (12)	0.0214 (12)	0.0168 (12)	
Geometric paran	neters (Å, °)						
S—O3		1.424 (2)	C3—0	24	1.3	66 (4)	
S—O2		1.438 (2)	C4—C	25	1.3	1.389 (3)	
S—N		1.627 (2)	C5—C	26	1.3	1.366 (3)	
S—C13		1.753 (2)	С7—С	28	1.390 (3)		
N—C12		1.438 (2)	С7—С	212	1.4	1.402 (3)	
O1—C7		1.371 (2)	C8—C	C9	1.3	1.382 (3)	
O1—C6		1.409 (2)	С9—С	210	1.3	81 (4)	
C1—C6		1.368 (3)	C10—	-C11	1.3	90 (3)	
C1—C2		1.381 (3)	C11—	-C12	1.3	81 (3)	
C2—C3		1.376 (3)					
O3—S—O2		118.96 (10)	C5—C	C6—C1	121	121.7 (2)	
O3—S—N		108.05 (10)	C5—C	C6—O1	120	0.3 (2)	
O2—S—N		105.55 (9)	C1—0	C6—O1	117.9 (2)		
O3—S—C13		107.87 (12)	01—0	С7—С8	124.8 (2)		
O2—S—C13		108.39 (11)	01—0	C7—C12	114.6 (2)		
N—S—C13		107.51 (11)	C8—C	C7—C12	120.6 (2)		
C12—N—S		120.98 (13)	С9—С	C8—C7	119.3 (2)		
С7—О1—С6		118.1 (2)	C10—C9—C8		120	0.5 (2)	
C6—C1—C2		118.7 (2)	С9—С	C10—C11	120.2 (2)		
C3—C2—C1		120.8 (2)	C12—	-C11—C10	120.3 (2)		
C4—C3—C2		119.5 (2)	C11—	-C12—C7	119.1 (2)		
C3—C4—C5		120.4 (2)	C11—	-C12—N	120.6 (2)		
C6—C5—C4		118.9 (2)	С7—С	C12—N	120	0.3 (2)	
O3—S—N—C12		47.0 (2)	C6—0	D1—C7—C12	177	.4 (2)	
O2—S—N—C12		175.27 (15)	01—0	С7—С8—С9	180	0.0 (2)	
C13—S—N—C12	2	-69.2 (2)	C12—	-C7C8C9	0.3	(3)	
C6—C1—C2—C	3	0.6 (4)	С7—С	C8—C9—C10	-0.4 (4)		
C1—C2—C3—C	4	-0.9 (4)	C8—C9—C10—C11		-0.4 (4)		
C2—C3—C4—C	5	0.3 (4)	C9—C10—C11—C12		1.3 (3)		
C3—C4—C5—C	6	0.5 (4)	C10-C11-C12-C7		-1.5 (3)		
C4—C5—C6—C	1	-0.7 (4)	C10—	-C11—C12—N	-17	78.5 (2)	
C4—C5—C6—O	1	-177.4 (2)	01—0	C7—C12—C11	-179.1 (2)		
C2—C1—C6—C	5	0.2 (3)	C8—0	C7—C12—C11	0.7 (3)		
C2—C1—C6—O	1	176.9 (2)	01—0	C7—C12—N	-2.	0 (3)	
С7—О1—С6—С	5	-74.1 (3)	C8—C	C7—C12—N	177	.8 (2)	
С7—О1—С6—С	1	109.1 (2)	S—N-		-82	2.6 (2)	
С6—О1—С7—С	8	-2.3 (3)	S—N-	C12C7	100	0.4 (2)	